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We present results from a Monte Carlo study of adsorption processes of end-functionalized polymers
from a solution to an adsorbing solid surface. We consider moderately large polymer chains with up to
200 monomers, and study the kinetics of polymer brush formation in a situation where the brush is in
contact with a bulk reservoir which can supply chains to the brush without any limit. In our simulations,
we consider both the kinetics of the adsorption process and the equilibrium structure of the brushes thus
formed. Once the brushes are formed and in equilibrium, we study the desorption of such an equilibri-
um brush layer under the conditions of (i) rinsing by a pure solvent, and (ii) keeping the brush in contact
with a solution containing other “attacking” chains with either stronger functional groups or shorter
lengths. The results of these studies are compared with analytical theories and experiments.

PACS number(s): 61.25.Hq

I. INTRODUCTION

The use of polymers in controlling the aggregation
properties of colloidal systems is important in a wide
range of areas such as paints, glues, food emulsion, phar-
maceuticals, etc. In such cases, a dispersed system in
which colloidal particles are maintained in suspension is
desired. This stabilization can be achieved by end graft-
ing suitable polymer chains to the surfaces of the col-
loidal particles [1,2]. In an ideal situation, the repulsion
between the resulting polymer layers or “brushes” [3,4]
maintains the colloidal particles at distances great
enough to render the inherent attractive forces
insignificant. The response of a brush upon coming into
contact with another brush [5] depends on the details of
the chain configurations in the brushes. A proper
theoretical understanding of the stabilization process
thus requires a thorough knowledge of the structure of
the polymer brush in various solvent conditions and in
the presence of various surface interactions. An impor-
tant step toward this has been taken recently by develop-
ing a self-consistent-field (SCF) formulation [6-9] for a
polymer brush. The SCF theory of Milner, Witten, and
Cates (MWC) [7] predicts that for good solvent condi-
tions and moderately high grafting densities, the density
profile should be of a parabolic shape, in contrast to the
step-function profile assumed by Alexander [10] and de
Gennes [11]. This parabolic density profile has been ob-
served in previous computer simulations [12—-14] and in
some recent experiments [15-17].

Most of these previous studies have considered poly-
mer brushes with a preassigned surface coverage, and
have assumed that the end-grafted functional groups are
never detached from the grafting surface. Thus, no ex-
change of polymer chains between the grafted layer and
the solution forming the brush has been allowed in the
above studies. In most of the experimental situations, on
the other hand, the grafted layer is constructed by keep-
ing a solution of end-functionalized polymers in contact
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with an adsorbing surface. In these cases, then, the
monomer concentration of the bulk solution is kept fixed,
and the adsorbed polymer layer is allowed to form by
self-assembly of the functionalized polymer chains at the
adsorbing wall. The final equilibrium state of the ad-
sorbed layer is then governed by the reversible exchange
of polymer chains between the grafted layer and the solu-
tion. The kinetics of formation of such a grafted layer
and the thermodynamics of the equilibrium layer thus
formed have been receiving attention only recently.
Analytical studies of the process of the brush formation
and the subsequent desorption of the polymers under
various conditions have been carried out by Ligoure and
Leibler (LL) [18] and by Milner [19]. Computer simula-
tions have also been carried out recently by Lai [20],
where chain exchange with the bulk solution was al-
lowed. However, the chains in this simulation study were
too short for any meaningful comparison with theoretical
predictions.

In this paper, we report results from an extensive
Monte Carlo simulation of the brush formation (and sub-
sequent desorption) from solutions. We study chains
with up to 200 monomers (chain length N =199) which is
an order of magnitude larger than the maximum chain
length used by Lai. Moreover, by averaging over many
initial conditions we are able to study the kinetics of the
brush formation quite accurately. We should also point
out that instead of using a closed system with a fixed
number of chains (as used by Lai), we consider the situa-
tion where the brush is in contact with a bulk reservoir
which can supply chains to the brush without any limit.
This is the condition under which the theoretical results
are strictly valid, and thus a quantitative comparison
with the theoretical prediction is possible with the results
of our simulation. Besides, considering a closed system
with a finite size is more prone to finite-size effects, as al-
ready recognized by Lai. In our simulation we consider
both the kinetics of the adsorption process and the equi-
librium structure of the brushes thus formed. Once the
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brushes are formed and are in equilibrium, we study the
desorption of such an equilibrium brush layer under the
condition of rinsing by a pure solvent, and also when the
brush is kept in contact with other “attacking” chains,
with either stronger functional groups or shorter lengths.

We organize the rest of the paper as follows. In Sec.
I1, we describe the model used and the method of simula-
tion used in this study. In Sec. III we present results for
thermodynamics and the kinetics of adsorption processes.
This section is divided into two parts. In Sec. IIT A, we
present the results from the kinetics part during the for-
mation of the brush, and in Sec. III B, we present results
from the analysis of the structure of the brush layer in
equilibrium. In Sec. IV, we present results of the desorp-
tion process under various solution conditions. This sec-
tion is also divided into two subsections. In Sec. IV A, we
present results from studies of rinsing of the brush layer
with pure solvents, and in the subsequent Sec. IV B, we
present results from studies where the equilibrated
brushes are in contact of solution of polymer chains with
either more strongly adsorbing end groups or shorter
lengths. The results of these studies are compared with
analytical theories and experiments wherever possible. In
Sec. V, we give a summary of the main results and a brief
conclusion.

II. SIMULATION METHODS

In this section, we describe the general Monte Carlo
simulation methods [21] used to implement movements of
the chains. The details of the simulation technique are
different for different sets of calculations and those par-
ticular details are described separately in later sections.
We model the polymer chains as N-step self-avoiding ran-
dom walks on a three dimensional 50 X 50X 100 cubic lat-
tice, with the first monomer of each chain representing an
adsorbing functional group (“sticker”). Periodic bound-
ary conditions are applied in the x and y directions, and
the system is bounded in the z direction by two impenetr-
able surfaces at z=0 and z=99. The surface at z=0 is
the only adsorbing surface, while the other surface at
z=99 is noninteracting. The wall-wall distance is much
larger than both the typical size of the chains in the solu-
tion, and the expected brush height. Thus, the second
surface should not affect the adsorption process. This
was explicitly checked in some trial runs. A number N,
of polymer chains is randomly placed on the lattice to
make up the desired bulk concentration of monomers
(¢o). The chains are placed one at a time, with care tak-
en to avoid any site which is already occupied. Lattice
sites which are not occupied by monomers represent sol-
vent molecules. The evolution of the chains is performed
according to Monte Carlo criteria, whereby a monomer is
chosen at random and an arbitrary move is attempted
about it. These moves consist of kink jumps, crankshaft
turns, and a slithering-snake-type motion (loosely called a
“reptation” move) [21], weighted so that half of the at-
tempted moves are reptations. A move is rejected if it re-
quires the chain to migrate to any lattice site already oc-
cupied by a monomer. In this way, the chains interact
via the excluded volume interaction. We measure time
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by the number of moves that are attempted. In this way,
one Monte Carlo step per monomer (MCS/M) is defined
as NXN, attempted moves, corresponding to one at-
tempted move on the average for each monomer in the
system. Since the monomers are chosen in a random
fashion, it is possible that some of the monomers may not
be selected for an attempted move. On average, however,
each segment undergoes one attempted move in one
MCS. The evolution of the system toward equilibrium is
then repeated several times with different initial condi-
tions, and the results of the kinetics section are then aver-
aged over all the “runs” (typically, ten runs per system
configuration).

III. THERMODYNAMICS
AND KINETICS OF ADSORPTION

A. Adsorption kinetics
of end-functionalized polymers

After starting from an initial random configuration for
the polymer chains with a given monomer concentration
(éo), the chains are equilibrated at an infinite temperature
for about 1000 MCS/M. Subsequently, the interaction
with the end-functional group and the adsorbing surface
is “turned on,” so that absorption of the ‘“‘sticker” to the
impenetrable surface at z=0 becomes energetically
favored. Then, any move consistent with the excluded-
volume criterion, which requires a sticker to become de-
tached from this adsorbing surface, is accepted with the
probability e “4, where A is the energy gained (in units of
kT) by the sticker in adsorbing to the surface. This ad-
sorption energy leads to the formation of an adsorbed
“brush” layer at the surface, which would progressively
deplete the system of its free chains. In order to maintain
a constant monomer density far from the surface, every
time a chain gets adsorbed we attempt to place a new
chain on the lattice at some random location [22]. If the
attempt fails, we try again with a new randomly chosen
location. Thus, the ease with which a chain is introduced
in the system depends on the monomer concentration
around that location. Similarly, for each chain which be-
comes desorbed, we select a free chain at random and
delete it from the lattice. In this way, we are considering
that the system is connected to a reservoir so that the to-
tal number of chains can continually change to maintain
a constant chain density in the bulk. In practice, the to-
tal number of chains is adjusted every 10 MCS/M, to
avoid repeatedly adding and deleting chains as a sticker
fluctuates about the surface.

We investigate the kinetics of this adsorption process
for systems with A=6 and 9. For the A=6 systems, we
consider a bulk monomer concentration of 5% for chain
lengths N=49 and 99. We also consider systems with
A=9 and a bulk monomer concentration of 2.5%, for
chain lengths of N =49, 99, and 199. The solution condi-
tions from which chains are being adsorbed are in the
semidilute range for the chain lengths considered. In
Figs. 1(a)-1(c) we show the evolution of the system with
time for a typical run. The number of polymer chains ad-
sorbed per unit area o(¢) increases with time (z), until the



49 KINETICS AND THERMODYNAMICS OF END- . ..

system finally reaches equilibrium and the number of po-
lymer chains adsorbed starts fluctuating about the equi-
librium value o.,. In Figs. 2(a) and 2(b) we show log-log
plots of o(t) vs ¢ for two different values of A and various
chain lengths. In all the cases studied here, we find that

(b) t=10000

(c) t=50000

FIG. 1. (a) A typical configuration of the system at time ¢ =0.
Here the chain length N =49, adsorption strength A=6, and
bulk monomer density ¢,=5%. (b) Same as in (a) except for
t=10000 MCS/M. Note the buildup of the adsorbed layer. (c)
Same as in (b) except for t =50000 MCS/M. By this time the
system has reached equilibrium.
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a(t)~t'? in the early to intermediate stages of the evolu-
tion process. This is consistent with the prediction [18]
that at early times the Kinetics of the adsorption process
is governed by Brownian diffusion of the chains in the
solution. The long-time dynamics of the adsorption pro-
cess is expected to be controlled by the activation barrier,
created by the polymer chains belonging to the brush,
against new chains being adsorbed to the surface [18,19].
In this regime o(?) would increase logarithmically with
time ¢. This logarithmic behavior in the case of a strong-
ly stretched adsorbed layer arises due to the fact that an
adsorbing chain would have to give up some of its free
energy to introduce itself into the brush. This activation
barrier may not be very strong in the simulations since, as
we will present shortly, the polymer chains in the brushes
are not strongly stretched for the cases considered here.
This may be due to the fact that the chain lengths used in
the simulations are not large enough to produce strongly
stretched brushes. However, we note that there is some
evidence of slow kinetics in the simulation near equilibri-
um, where we find that the evolution is slower than that
in the earlier stages.

We now present the evolution of the density profile for
the adsorbed chains. In Fig. 3(a) we plot the density
profile ¢(z,t) vs z for N=99 and A=6, for various times.
In Fig. 3(b) we carry out a dynamical scaling analysis of

In o(t)

In o(t)

FIG. 2. (a) Log-log plot of the number of chains adsorbed per
unit area (surface coverage of adsorbed chains) o(t) vs ¢ for
A=6 and for N=49 and 99. The slopes of the straight lines are
0.51 and 0.49, respectively. (b) Same as in (a) except for A=9.
Here N=49, N=99, and N=199. The slopes of the straight
lines are 0.53, 0.52, and 0.52, respectively.
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these profiles by rescaling z by (z(¢)) and ¢(z,t) by
bmax(t), where (z(2)) is the first moment of the density
profile (which should be a reasonably good measure of the
brush height), and ¢,,,(?) is the maximum value of the
density profile (note that in the simulation this maximum
in the density profile does not occur right at the surface;
rather the maximum is located at a distance of a few
monomer sizes away from the adsorbing surface). At late
times, scaling works quite well in this form, indicating
that the layer height is the dominant length scale during
the adsorption process. Similar scaling plots can be ob-
tained for other values of NV and A.
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FIG. 3. (a) The density profile of the adsorbed layer at vari-
ous times. Here A=6 and N=99. The density profile at equi-
librium is also shown for comparison. (b) Dynamical scaling
plot of the normalized density profiles shown in (a). (b) Dynam-
ical scaling plot of the normalized density profiles for various N
and A values. Here the data correspond to t =~ 7.,/2.

We compute various time scales associated with the
construction of the brush layer. One such time scale is
the equilibration time 7., which is the time required to
reach equilibrium, as computed from the plateau of the
o(t) curves. We also compute another time scale 7,
which is a measure of the time required to construct the
brush layer in the following way. First we define a quan-
tity,

g(t)=[o(t)—0l/o (1)

eq

and then define 7, as the integral,
r=—J "awar . @)

The time scales 7., and 7, are listed in Table I.

In Fig. 3(c) we show another scaling plot with data tak-
en from runs with various values of N and A. We choose
t=~7,/2 in each case. We carry out a scaling analysis
similar to that of Fig. 3(b), and find that scaling again
works reasonably well, indicating that the kinetics of the
adsorption process for various N and A values can be un-
derstood in terms of a dominant length scale, namely the

brush height.

B. Equilibrium structure of the grafted layer

In Table II we list various properties of the adsorbed
layer at equilibrium. Before we analyze the equilibrium
data, let us first point out that we have checked that
proper equilibrium has been obtained by starting from
two very different initial configurations. One such case is
shown in Fig. 4 for N=49 and A=9, where we show the
evolution of the system for two initial configurations, one
with no adsorbed chains at the beginning, and the other
starting with about twice as many chains as can be ad-
sorbed to the surface in equilibrium. The fact that the
evolution of the system converges to a state with the
same number of chains adsorbed gives us confidence that
the data presented in Table II correspond to the true
equilibrium situation.

Typical equilibrium density profiles of adsorbed and
free chain monomers are shown in Figs. 5(a) and 5(b). It
i1s quite clear that the adsorbed profile is nonparabolic.
We empirically find that tgle profile resembles a Gaussian
form, i.e., qﬁeq(z): Ae "B, although we do not know of
any theoretical work which predicts a Gaussian density
profile for grafted polymers. The fitting parameters for
these Gaussian fits are listed in Table III. We believe
that this nonparabolic behavior is due to the presence of

TABLE 1. Characteristic time scales (in units of MCS/M) 7,
and 7. (see text) corresponding to the construction of the graft-
ed brush layer from the solution.

N A b0 Teq T,
49 6 0.0535 8100 3500
99 6 0.0551 13400 4000
49 9 0.0277 60000 18 500
99 9 0.0294 77000 18 800
199 9 0.0313 98 000 27 100
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TABLE II. Characteristics of the adsorbed brush layer in equilibrium. The unperturbed radius of
the chains R, are computed from the relation R, =aN”, where we have put v=0.6 and a =1, consistent
with the results of Monte Carlo simulations of lattice chains in Ref. [23].

N A b0 Oeq (Zeq ) beq (2 =0) Pmax R, iz R, oljjs o
eq
49 6 0.0535 0.065 4.44 0.47 0.51  20.55 10.33 5.71 14.2 0.28
99 6 0.0551 0.041 5.31 0.41 0.47 26.00 15.75 8.27 24.1 0.18
49 9 0.0277 0.107 5.45 0.60 0.63 21.06 10.33 7.68 16.2 0.27
99 9 0.0294 0.067 6.23 0.52 0.57 2544 15.75 11.40 28.1 0.17
199 9 0.0313 0.042 7.50 0.45 0.53 31.24 23.95 17.02 49.0 0.11
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the free chains which penetrate into the brush layer to
some extent. The adsorbed chains are not strongly
stretched, due to the screening effect produced by the free
chains, and this may account for the nonparabolic
behavior of the density profile. Indeed, if we instantane-
ously remove all free chains from the system, we find that
the adsorption profile quickly (within a few hundred
MCS/M) assumes a parabolic form. Averaging over all
chains in equilibrium, we measure the end-to-end length
of a chain R, in the brush layer. By comparing R, in the
brush layer with the corresponding end-to-end distance
of free, unperturbed chains (R,) [23] (see Table II), we
conclude that the adsorbed chains are not strongly
stretched. It seems that much longer chain lengths and
stronger adsorption strength are necessary to get a
strongly stretched brush layer. As an indicator of the ex-
tent to which the chains are stretched in the brush layer,
and as a measure of the brush height, we compute the
perpendicular end-to-end distance of the adsorbed chains
R,. The corresponding rescaled quantity R, /ol in
equilibrium is tabulated in Table II in each case. In the
strongly stretched regime the above ratio should scale as
N; here, however, we find that R l/aész(”s. This
again indicates that the adsorbed chains are not strongly
stretched.

The equilibrium density profiles for various N and A
values are shown in Fig. 6 in a scaling plot, where we plot
the rescaled density ¢q(z)/dmax Vs the rescaled distance
z/{z.y). From this plot, we conclude that the scaling

020 .
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t

FIG. 4. Test of equilibrium for a run with N=49 and A=9.
The two lines correspond to two different initial conditions: one
with no chains adsorbed initially, and the other one with a very
large number of chains adsorbed at the surface.
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description also works well at equilibrium. We have also
compared the profiles to those obtained from a
Scheutjens-Fleer-type  numerical  self-consistent-field
(SCF) model [24], adapted to the conditions of our Monte
Carlo model. Considering values of the Flory-Huggins
parameter to be y=0 (self-avoiding walk) and xy=0.5
(random walk), we have found that although the SCF
model yields the same qualitative shape for the density
profile, it grossly underestimates the amount of adsorbed
polymer. In fact, the SCF results would seem to indicate
that a negative (unphysical) value of y is required to
represent this many-body problem. This would imply
that the interaction between adsorbed chains, beyond be-
ing screened out, actually becomes attractive.

The assumption of a parabolic profile serves as a start-
ing point for some previous studies of the adsorption
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30 40 50

FIG. 5. (a) Equilibrium density profiles for the adsorbed and
the free chains. Here N=99 and A=6. The solid line is a fit to
a Gaussian profile. (b) Same as in (a) except for N=199 and
A=9 in this case.
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TABLE III. Fitting parameters 4 and B computed from
fitting the equilibrium density profiles of the brushes to an
empirical Gaussian form ¢.,(z)= 4e “Bz7

N A o Oeq A B
49 6 0.0535 0.065 0.516 0.022 61
99 6 0.0551 0.041 0.472 0.01147
49 9 0.0277 0.107 0.639 0.01196
99 9 0.0294 0.067 0.574 0.006 00
199 9 0.0313 0.042 0.527 0.003 13

kinetics [18—19]. This assumption, which corresponds
to the limit of strongly stretched chains, turns out to be
inapplicable to the systems we are considering, as a para-
bolic profile cannot be attained in this regime. As has
been discussed by Ligoure and Leibler and by Milner, the
final equilibrium surface coverage o, for a bare surface
growing a brush from solution would be governed by the
reversible exchange of chains from solution. After
matching different energy and entropy contributions, one
can write the equilibrium condition as

f—A+Ino =Ing, , (3)

where f is the free energy per chain in the brush relative
to a coil in the solution. LL and Milner then assume that
the chains are strongly stretched in the adsorbed layer
and write

f=3/27*/12)'’No2? . 4)

By solving Egs. (1) and (2), one can then obtain o for
various values of N and A. This will not be particularly
useful in our case, since we cannot use the expression for
f given in Eq. (2), which is valid only in the strongly
stretched regime.

LL write Eq. (1) in another equivalent way as

Nodga=A+In(dy/a) , (5)

where a=[d.(z=0)—¢,]/¢y, and  is the (effective)
value of the excluded-volume parameter. This effective
value of w is expected to be different in the presence of
the free chains, due to the screening effect produced by
these free chains. From the above equation, we compute

1.0 ‘-u{&r T T T T
0.8 - q
154 o A=6, N=49
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FIG. 6. Scaling plot of the normalized equilibrium density
profiles for various N and A values.
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this effective value of w and tabulate it in Table II as well.
Note that these values of w are considerably less than the
value (w=0.5) obtained in the previous Monte Carlo
simulation of a strongly stretched grafted polymer brush
in good solvent condition yielding a parabolic density
profile [12a]. This decrease of the excluded-volume pa-
rameter is the reason why the grafted layer is not strong-
ly stretched in the present simulation. Our results for the
effective value of w suggest that w depends only on N. To
understand the result, one needs to consider a polymer
brush kept in contact with a matrix of polymer chains of
length P. This problem has been considered by several
authors [25-29] before. In such a situation, one can
show that the expression for the brush height can alterna-
tively be written in terms of an effective excluded volume
parameter which goes as P !. Since in our case, the free
chains are of the same length as the adsorbed chains;
P=N, and we expect that the effective ®~N ~!. Since
we have data for very limited ranges of N values, it is
very difficult to extract the N dependence of the effective
value of w. From the few data points we have, we find
that o~N ~3/* or so.

IV. DESORPTION KINETICS
OF THE GRAFTED LAYER

A. Rinsing of the brush layer with pure solvents

We next investigate the behavior of an adsorbed brush
layer being rinsed away by immersion in a pure solvent.
The equilibrium chain configuration from Sec. IIIB is
used to provide the brush layer by keeping only those
chains whose stickers are on the adsorbing surface. To
this end, the free chains are removed from the system,
which is equivalent to placing the surface and the ad-
sorbed layer in a pure solvent. The chains are then al-
lowed to evolve according to the same criteria as before.
We consider two cases: (a) a closed system, such that
desorbing chains are allowed to remain in the bulk phase;
(b) an open system, such that desorbing chains are deleted
(“flushed away’’) from the system when they are com-
pletely past the furthest extent of the brush layer, which
also evolves dynamically. In the first case, the total num-
ber of chains in the whole system remains constant. The
second case corresponds to a very large reservoir of sol-
vent with a current which removes the desorbed chains
once they are clear of the brush.

We consider such rinses for the A=6 systems for both
N =49 and N=99. For both N=49 and N =99, the de-
crease of o (¢) with time for the closed system is plotted in
Fig. 7(a). In this case, we note that o(t) decreases initial-
ly, and eventually reaches a new equilibrium, as the
desorbed chains build up a new bulk monomer concentra-
tion. The corresponding decrease of o(¢) for the second
case, i.e., an open system, is seen to decrease exponential-
ly in the semilog plot of Fig. 7(b), as predicted by LL [18].
By fitting this decay to a functional form

—t/7,

o(t)= Ae b, (6)

we compute the time constant Tw, associated with this
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FIG. 7. (a) Decay of the number of adsorbed chains per unit
area (surface coverage) o(t) with time ¢ for a rinse with pure sol-
vent in a closed system. Here N=49 and N =99, respectively,
and A=6. (b) Semilog plot of the decay of the surface coverage
o(t) with time ¢ for a rinse with pure solvent in an open system.
Here N =49 and N =99, respectively, and A=6.

wash. These values of 7, for two different N values are

listed in Table IV. We also extract a time scale for the
closed-system wash Tw, in the following way. For this

purpose, we first define a quantity,
G()=[o(t)—0]/(0g—0¢g) 0))

and then define 7,, as the integral,
7o, = [ o011 (8)

This time scale 7, is also listed in Table IV. Note that

these values of the characteristic time associated with the
desorption of the brush are much longer than the corre-
sponding characteristic times for the construction of the
brush (which are listed in Table II). This result is in good
agreement with the theoretical predictions of LL.

TABLE 1V. Characteristic time scales (in units of MCS/M)
corresponding to the desorption of the grafted brush layer for a
rinse with the pure solvent under open-system and closed-
system conditions.

N A Tw, Tw,
49 6 39800 13900
99 6 71500 19900
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B. Competitive adsorption

We consider the effect of placing an adsorbed polymer
brush (4 phase) in a solution of unlike polymer (B
phase), with the intent to actively remove and replace the
brush polymer. We again consider two cases: (a) replace-
ment by chains of similar molecular weight but stronger
adsorption energy; (b) replacement by chains of smaller
molecular weight but identical adsorption energy. In ei-
ther case, we again start with the equilibrium
configuration of part A, keeping only the adsorbed
chains. We then place on the lattice an appropriate num-
ber of B-type chains such that the bulk monomer concen-
tration of B chains is identical to what was used to form
the brush layer. The B chains are initially restricted from
the brush layer, corresponding to a dividing plate
separating the two phases. Since the B chains are not ini-
tially distributed over the whole lattice but are confined
to a portion of it away from the brush layer, the bulk
concentration of B monomers is slightly higher than the
desired concentration. The B chains are allowed to
equilibrate for a period, after which the partition is re-
moved. The B chains are then allowed to penetrate into
the brush layer, and the A4 chains are also allowed to
evolve. In either case, we consider only closed systems
such that the total numbers of 4 and B chains remain
constant. Desorbed chains remain in the bulk and are
not deleted. It is worth noting that even in the case
where the chains do not all have the same molecular
weight, each monomer of every chain stands an equal
chance of being selected for an attempted move. Let us
first show the evolution of the density profiles for the
brush layer and the initially free “attacking” polymers.
As shown in Figs. 8(a) and 8(b), the brush layer desorbs in
each case, while the attacking polymers slowly form an
adsorbed layer. Subsequently, the system comes to equi-
librium.

Now, we concentrate on the first case, where we con-
sider replacement of a A=6 brush with chains whose ad-
sorption energy is A=9. Both N=49 and 99 situations
are considered. Equilibrium density profiles of 4- and
B-type chains are shown in Fig. 9(a), while coverages are
plotted as functions of time in Fig. 9(b). We find that the
adsorption profile of the 4 chains has a parabolic form,
while that of the B chains has a Gaussian form. We also
find that the decay of the coverage o(¢) of the A chains
can be fitted to an exponential form reasonably well, if we
subtract the final equilibrium value of the surface cover-
age from o(¢). We extract a time scale associated with
this competitive adsorption (Tal) in the same way as be-

fore, by defining a quantity &(z) and computing the in-
tegral of this quantity. The values of the time scale Ta,

are listed in Table V. Comparing this time scale with the
corresponding time scale of rinsing (‘Tw2) with a pure sol-

vent (in the closed system), we find that these two time
scales are of similar magnitude. This indicates that the
strongly adsorbing attacking chains are not very effective
in displacing the adsorbed polymer brush layer. This re-
sult is in good qualitative agreement with the theoretical
prediction of Milner, although the chains in our adsorbed
layer are not strongly stretched.
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FIG. 8. (a) Competitive adsorption: Decay of the density
profile for a brush layer (with N=49 and A=6) and the corre-
sponding growth of the density profile for the “attacking”
chains (N=49, A=9) with time. (b) Competitive adsorption:
Decay of the density profile for a brush layer (with N =99 and
A=6) and the corresponding growth of the density profile for
the “attacking” chains (N =24, A=6) with time.

For the second case (different molecular weights), we
consider the replacement of a brush with N=49 by
chains with N =24 followed by the replacement of an
N =99 brush with N=49 and 24 chains. In all three
cases, we have A=6. Again, equilibrium density profiles
of A- and B-type chains are shown in Fig. 10(a), while
coverages are plotted as functions of time in Fig. 10(b).
Again, we find that the A chains’ decay follows an ex-
ponential form, once the equilibrium surface coverage is
subtracted out. Also, at equilibrium, the density profile
for the longer chains assumes a parabolic form beyond
the region dominated by the short chains. As in the pre-
vious section, we extract the time scales associated with
this competitive adsorption (Taz) and list them in Table

V. Comparing this time scale with both the time scale of
rinsing (rwz) with a pure solvent (in the closed system),

and with the time scale of replacing the adsorbed layers
by invading polymers with the same molecular weight
but strongly adsorbing sticker sites (‘ra1 ), we find that this

new time scale is smaller than both of these previously
computed time scales. Thus, our results strongly indicate
that shorter chains are more effective in displacing the
adsorbed layer. This result is also in good qualitative
agreement with the theoretical prediction of Milner, and
with experimental observations [30,31]. Since we have
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FIG. 9. (a) Equilibrium density profile under competitive ad-
sorption. Here the A-type chains correspond to N=49 and
A=6; and the B-type chains correspond to N =49, A=9. (b)
Decay of the surface coverage for the A-type chains and the
corresponding growth of the surface coverage of the B-type
chains under competitive adsorption. Here the A-type chains
correspond to N =49 and A=6; and the B-type chains corre-
spond to N =49, A=9.

data for only a few chain lengths, it is difficult to extract
information as to how the new time scale Ta, depends on

the ratio of N, /Ng. Theoretical work of Milner predicts
that the time scale for desorption by shorter chains
should be reduced by a factor of (N, /Ng)~'/? compared
to the time scales of desorption with either pure solvent
or of desorption with chains of the same molecular
weight but strongly adsorbing sticker sites. Although we

TABLE V. Characteristic time scales (in units of MCS/M)
corresponding to the desorption of the grafted brush layer un-
der competitive adsorptions. Here N, =N is the chain length of
the initially adsorbed polymers, and Np and A, are, respective-
ly, the chain length and sticker adsorption energy for the “at-
tacking” polymers.

NA A NB AB Tal Tuz
49 6 49 9 15600

99 6 99 9 19 800

49 6 24 6 10500
99 6 24 6 11 800
99 6 49 6 13700
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FIG. 10. (a) Equilibrium density profile under competitive
adsorption. Here the A4- type chains correspond to N =99 and
A=6; and the B-type chains correspond to N=24, A=6. (b)
Decay of the surface coverage for the A-type chains and the
corresponding growth of the surface coverage of the B-type
chains under competitive adsorption. Here the A-type chains
correspond to N=99 and A=6, and the B-type chains corre-
spond to N =24, A=6.

consider a closed system here, and our chains lengths are
quite short for this type of theory to be applicable, we
note that our data are still consistent with Milner’s pre-
dictions.

V. CONCLUSIONS

Through Monte Carlo simulations of end-
functionalized polymer chains in solution, we have stud-
ied the adsorption and desorption processes of polymers
at a surface. We have studied the kinetics of polymer
brush formation in a situation where the brush is in con-
tact with a bulk reservoir which can supply chains to the
brush without any limit. We have found that the surface
coverage grows as o ~t!/2, forming a brush layer in equi-
librium with the solution. This equilibrium state is
characterized by a Gaussian density profile, unlike the
parabolic profiles seen in previous studies. This is due to
the screening of the excluded-volume parameter provided
by the significant penetration of free chains into the
brush layer. The adsorbed chains are therefore not
strongly stretched. We have also found that both the
dynamical and equilibrium situations fit a scaling form in
which the dominant length scale is given by the first mo-
ment of the density profile.

The characteristic rinsing time of this equilibrium
brush layer by a pure solvent is found to be larger than
the construction time, in good agreement with the predic-
tions of Ligoure and Leibler. When the brush is im-
mersed in a solution of different polymer chains, the time
scale of its desorption is found to be smaller for a solution
of shorter chains than it is for a solution of chains with
greater adsorption energy. Shorter chains are thus found
to be more effective than chains with a stronger function-
al group in displacing the brush layer. This result is in
good agreement with the theoretical prediction of Milner.
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FIG. 9. (a),(b) Microscope photographs of instability in drops
with axis parallel to E and E=667 kV/m. (c)-(f) Explanation
of instability transition from concentric to escaped planar bipo-
lar structure. (c) s = +1 concentric boojums move toward each
other causing escaped line to bend; (d) boojums combine to form
single s =+2 boojum; (e) s =+2 boojum splits into two radial
s=-+1 boojums; (f) s=+1 boojums migrate to diametrically
opposite positions to form escaped planar bipolar structure.



